NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York

DEPARTMENT:	Mathematics
COURSE:	MAT 2440
TITLE:	Discrete Structures and Algorithms I
DESCRIPTION:	This course introduces the foundations of discrete mathematics as they apply to computer science, focusing on providing a solid theoretical foundation for further work. Topics include functions, relations, sets, simple proof techniques, Boolean algebra, propositional logic, elementary number theory, writing, analyzing and testing algorithms.
TEXT:	<u>Discrete Mathematics and its</u> <u>Applications</u> , 7 th edition Kenneth H. Rosen McGraw-Hill
CREDITS:	3 (2 class hours, 2 lab hours)
PREREQUISITES:	CST 2403 and MAT 1375
	Prepared by Prof. A. P. Taraporevala Fall 2011
A. Testing Guidelines:	

The following exams should be scheduled:

- 1. A one-hour exam at the end of the First Quarter.
- 2. A one session exam at the end of the Second Quarter.
- 3. A one-hour exam at the end of the Third Quarter.
- 4. A one session Final Examination.

B. A Computer Algebra System (CAS) is used in class and for assignments (suggested problems are marked with an asterisk). This is a writing intensive course.

Course Intended Learning Outcomes/Assessment Methods

Learning Outcomes		Assessm	nent	Methods	
 use the rules of logic to understand mathematical statements and prove propositions using A direct proof. An indirect proof. A proof by contradiction. Mathematical induction. 	Classroom exams.	activities	and	discussion,	homework,
2. Write simple algorithms using pseudocode.	Classroom exams.	activities	and	discussion,	homework,
 3. Traverse trees. Represent an expression using a binary tree and write it in prefix, postfix, and infix notation. Build spanning trees. 	Classroom exams.	activities	and	discussion,	homework,
4. Use computer technology to assist in the above.	Classroom exams.	activities	and	discussion,	homework,

General Education Learning Outcomes/Assessment Methods

Learning Outcomes	Assessment Methods
1. Gather, interpret, evaluate, and apply information discerningly from a variety of sources.	Classroom activities and discussion, homework, exams.
2. Understand and employ both quantitative and qualitative analysis to solve problems.	Classroom activities and discussion, homework, exams.
3. Employ scientific reasoning and logical thinking.	Classroom activities and discussion, homework, exams.
4. Communicate effectively using written and oral means.	Classroom activities and discussion, homework, exams.
5. Utilize computer based technology in accessing information, solving problems and communicating.	Classroom activities and discussion, homework, exams.
6. Work with teams. Build consensus and use creativity.	Classroom activities and discussion, homework.
7. Acquire tools for lifelong learning.	Classroom activities and discussion, homework, exams.

Mathematics Department Policy on Lateness/Absence

A student may be absent during the semester without penalty for 10% of the class instructional sessions. Therefore,

If the class meets:	The allowable absence is:
1 time per week	2 absences per semester
2 times per week	3 absences per semester

Students who have been excessively absent and failed the course at the end of the semester will receive either

- the WU grade if they have attended the course at least once. This includes students who stop attending without officially withdrawing from the course.
- the WN grade if they have never attended the course.

In credit bearing courses, the WU and WN grades count as an F in the computation of the GPA. While WU and WN grades in non-credit developmental courses do not count in the GPA, the WU grade does count toward the limit of 2 attempts for a developmental course.

The official Mathematics Department policy is that two latenesses (this includes arriving late or leaving early) is equivalent to one absence.

Every withdrawal (official or unofficial) can affect a student's financial aid status, because withdrawal from a course will change the number of credits or equated credits that are counted toward financial aid.

New York City College of Technology Policy on Academic Integrity

Students and all others who work with information, ideas, texts, images, music, inventions, and other intellectual property owe their audience and sources accuracy and honesty in using, crediting, and citing sources. As a community of intellectual and professional workers, the College recognizes its responsibility for providing instruction in information literacy and academic integrity, offering models of good practice, and responding vigilantly and appropriately to infractions of academic integrity. Accordingly, academic dishonesty is prohibited in The City University of New York and at New York City College of Technology and is punishable by penalties, including failing grades, suspension, and expulsion. The complete text of the College policy on Academic Integrity may be found in the catalog.

Week	Discrete Structures and Algorithms I	Homework
1	1.1 Propositional Logic pages 1 – 12	P. 12 : 1, 2, 3, 6, 9, 11, 14, 23, 27 - 31, 37, 44
	1.3 Propositional Equivalences pages 25 – 34	P. 34 : 3, 4, 6, 9
	Introduction to CAS	Does MATLAB recognize irrational numbers? Why?
		Is the decimal representation a rational number? Is
		1.55555 a rational number? Why?
2	1.4 Predicates and Quantifiers pages 36 – 52	P. 53 : 1, 3, 4, 7 – 13 odd, 19, 30, 36
	1.5 Nested Quantifiers pages 57 – 64	P. 64 : 10, 27, 31, 33
	1.6 Rules of Inference pages 69 – 78	P. 79 : 19, 20, 35 (written assignment)
	CAS Logic	
3	1.7 Introduction to Proofs pages 80 – 90	P. 91 : 1 – 4, 9 – 12, 17, 18, 35
	2.1 Sets pages 115 – 125	P. 125 : 11, 19 (a) & (b), 27, 29, 31, 35
	2.2 Set Operations pages 138 – 152	P. 136 : 3, 15 (b), 17 (b), 21 - 23, 26, 46, 47, 49
	CAS Sets	(written assignment), 52 - 55, 57
4	First Examination	
	2.3 Functions pages 133 – 146	P. 146 : 3, 8, 10 – 12 all, 15, 20 (written assignment),
	CAS Floor and ceiling functions	23, 24, 30, 33, 39, 42 - 44, 58 - 61
5	2.4 Sequences and Summations pages 156 – 167	P. 167 : 3, 25, 29, 30, 31, 33, 35 – 39 all, 43
	2.5 Cardinality of Sets pages 170 – 176	P. 176 : 1, 3, 11
	3.1 Algorithms pages 191–195	P. 177 : 1, 3*, 5*, 7*, 11*, 13, 14, 16*, 17*, 18*, 27*
	CAS m-files (maximum, linear search)	
6	3.1 Algorithms pages 196 – 198	P. 203 : 34, 35, 36, 37*, 38 – 41 all, 42*, 43*
	MATLAB m-files (binary search)	
7	3.1 Algorithms pages 198 – 202	P. 208 : 47, 48, 50, 52, 53, 57 (written assignment)
	4.1 Divisibility and Modular Arithmetic pages 237 – 244	P. 244 : 15, 21, 29, 26, 27, 28, 30*, 31, 32
	4.2 Integer Representations and Algorithms pages 245 – 254	P. 255 : 1 – 14 all, 25, 27, 32, 34, 47, 53*, 54, 55*, 56
	CAS m-files (bubble sort)	

MAT 2440 Discrete Structures and Algorithms I Text: Discrete Mathematics and its Applications, 7th edition, by K. H. Rosen

MAT 2440 Discrete Structures and Algorithms I	Text: Discrete Mathematics and its Applications, 7 th edition, by K. H. Rosen

Week	Discrete Structures and Algorithms I	Homework
	Mid-semester Examination	
8	4.3 Primes and Greatest Common Divisor pages 257 – 272	P. 272 : 3, 16, 25, 28, 33,
	4.5 Applications of Congruences pages 287 – 292	P. 292 : 2, 3, 6, 8*
	4.6 Cryptography pages 294 – 303	P. 304 : 1 – 5 odd
	CAS m-files (insertion sort)	
9	5.1 Mathematical Induction pages 311 – 329	P. 329 : 1, 3 – 12, 15, 21, 25
	5.2 Strong Induction and Well-Ordering pages 333 – 341	P. 341 : 7, 11, 13
	CAS m-files (Constructing Base b)	
10	5.3 Recursive Definitions and Structural Induction pages 344 – 357	P. 357 : 1 – 7 odd, 30, 33 - 35 all, 43, 44, MATLAB
	5.4 Recursive Algorithms pages 360 – 370	definition of Ackermann's function, 48*, 51*, 60, 61
	CAS m-files (Euclidean Algorithm)	P. 370 : 1 – 5 odd, 7*, 8*, 9*, 10*, 16, 29, 30, 36*, 46, 50,
		51, 52*
11	5.5 Program Correctness pages 372 – 376	P. 377 : 3, 7
	Third Examination	
12	10.1 Graphs and Graph Models pages 641 – 649	P. 649 : 3 - 9 all, 33
	10.2 Graph Terminology and Special Types of Graphs pages 651 – 665	P. 665 : 20, 59, 61, 67, 71, 72
	10.4 Connectivity pages 678 – 689	
	CAS Recursive Algorithms	P. 689 : 1 – 5 all, 11
13	11.1 Introduction to Trees pages 745 – 755	P. 755 : 1 – 10 all , 17 – 20 all, 21 (written Assignment),
		27, 28, 33, 34, 38 – 41 all
	11.2 Applications of Trees pages 757 – 769	P. 769 : 1-7 odd, 11, 19, 21, 22, 37
	11.3 Tree Transversal pages 772 – 772	P. 783 : 1, 3, 6, 7, 9, 10, 12, 13, 15, 22 – 24 all
	CAS Presentation	
14	11.4 Spanning Trees pages 785 – 795	P. 795 : 2 – 6, 13 – 15, 16, 27, 28, 30
	11.5 Minimum Spanning Trees pages 797 – 802 (optional)	P. 802 : 1, 2, 3, 6, 7
	CAS Presentation	
15	Review/ CAS Presentation	
	Final Examination	

MAT 2440 Discrete Structures and Algorithms I	Text: <u>Discrete Mathematics and its Applications</u> , 7 th edition, by K. H. Rosen

Discrete Structures and Algorithms I	Homework
1.1 Propositional Logic pages 1 – 12	P. 12 : 1, 2, 3, 6, 9, 11, 14, 23, 27 - 31, 37, 44
1.3 Propositional Equivalences pages 25 – 34	P. 34 : 3, 4, 6, 9
Introduction to CAS	Does MATLAB recognize irrational numbers? Why?
	Is the decimal representation a rational number? Is
	1.55555 a rational number? Why?
1.4 Predicates and Quantifiers pages 36 – 52	P. 53 : 1, 3, 4, 7 – 13 odd, 19, 30, 36
1.5 Nested Quantifiers pages 57 – 64	P. 64 : 10, 27, 31, 33
1.6 Rules of Inference pages 69 – 78	P. 79 : 19, 20, 35 (written assignment)
CAS Logic	
1.7 Introduction to Proofs pages 80 – 90	P. 91 : 1 – 4, 9 – 12, 17, 18, 35
2.1 Sets pages 115 – 125	P. 125 : 11, 19 (a) & (b), 27, 29, 31, 35
2.2 Set Operations pages 138 – 152	P. 136 : 3, 15 (b), 17 (b), 21 - 23, 26, 46, 47, 49
CAS Sets	(written assignment), 52 - 55, 57
First Examination	
2.3 Functions pages 133 – 146	P. 146 : 3, 8, 10 – 12 all, 15, 20 (written assignment),
CAS Floor and ceiling functions	23, 24, 30, 33, 39, 42 - 44, 58 - 61
2.4 Sequences and Summations pages 156 – 167	P. 167 : 3, 25, 29*, 30, 31, 33, 35 – 39 all, 43, 31
2.5 Cardinality of Sets pages 170 – 176	P. 176 : 1, 3, 11
3.1 Algorithms pages 191–195	P. 177 : 1, 3*, 5*, 7*, 11*, 13, 14, 16*, 17*, 18*, 27*
CAS m-files (maximum, linear search)	
3.1 Algorithms pages 196 – 198	P. 203 : 34, 35, 36, 37*, 38 – 41 all, 42*, 43*
CAS m-files (binary search)	
3.1 Algorithms pages 198 – 202	P. 208 : 47, 48, 50, 52, 53, 57 (written assignment)
4.1 Divisibility and Modular Arithmetic pages 237 – 244	P. 244 : 15, 21, 29, 26, 27, 28, 30*, 31, 32
4.2 Integer Representations and Algorithms pages 245 – 254	P. 255 : 1 – 14 all, 25, 27, 32, 34, 47, 53*, 54, 55*, 56
CAS m-files (bubble sort)	

MAT 2440 Discrete Structures and Algorithms I	Text: Discrete Mathematics and its Applications, 7 th edition, by K. H. Rosen

Discrete Structures and Algorithms I	Homework
Midterm Examination	
4.3 Primes and Greatest Common Divisor pages 257 – 272	P. 272 : 3, 16, 25, 28, 33,
4.5 Applications of Congruences pages 287 – 292	P. 292 : 2, 3, 6, 8*
4.6 Cryptography pages 294 – 303	P. 304 : 1 – 5 odd
CAS m-files (insertion sort)	
5.1 Mathematical Induction pages 311 – 329	P. 329 : 1, 3 – 12, 15, 21, 25
5.2 Strong Induction and Well-Ordering pages 333 – 341	P. 341 : 7, 11, 13
CAS m-files (Constructing Base b)	
5.3 Recursive Definitions and Structural Induction pages 344 – 357	P. 357 : 1 – 7 odd, 30, 33 - 35 all, 43, 44, MATLAB definition of Ackermann's function, 48*, 51*, 60, 61
5.4 Recursive Algorithms pages 360 – 370	P. 370 : 1 – 5 odd, 7*, 8*, 9*, 10*, 16, 29, 30, 36*, 46, 50,
CAS m-files (Euclidean Algorithm)	51, 52*
5.5 Program Correctness pages 372 – 376	P. 377 : 3, 7
Third Examination	
10.1 Graphs and Graph Models pages 641 – 649	P. 649 : 3 - 9 all, 33
10.2 Graph Terminology and Special Types of Graphs pages 651 – 665	P. 665 : 20, 59, 61, 67, 71, 72
10.4 Connectivity pages 678 – 689	
CAS Recursive Algorithms	P. 689 : 1 – 5 all, 11
11.1 Introduction to Trees pages 745 – 755	P. 755 : 1 – 10 all , 17 – 20 all, 21 (written Assignment),
	27, 28, 33, 34, 38 – 41 all
11.2 Applications of Trees pages 757 – 769	P. 708 : 1-7 odd, 11, 19, 21, 22, 37
11.3 Tree Transversal pages 772 – 772	P. 783 : 1, 3, 6, 7, 9, 10, 12, 13, 15, 22 – 24 all
CAS Presentation	
11.4 Spanning Trees pages 785 – 795	P. 795 : 2 – 6, 13 – 15, 16, 27, 28, 30
11.5 Minimum Spanning Trees pages 797 – 802 (optional)	P. 802 : 1, 2, 3, 6, 7
CAS Presentation	
Review/ CAS Presentation	
Final Examination	